Hello Mat

 找回密码
 立即注册
查看: 3320|回复: 0

CNN-RNN神经网络

[复制链接]

1323

主题

1551

帖子

0

金钱

管理员

Rank: 9Rank: 9Rank: 9

积分
22647
发表于 2017-9-14 23:47:19 | 显示全部楼层 |阅读模式
CNN-RNN神经网络:
百度网盘代码分享:http://pan.baidu.com/s/1eRQcCuu
电脑:Win7旗舰版+64Bit+AMD Athlon(tm)X2 DualCore QL-64 2.10GHz   RAM2.75GB
Anaconda3-4.2.0-Windows-x86_64
  1. import time
  2. #from tensorflow.examples.tutorials.mnist import input_data
  3. import tensorflow as tf
  4. import Get_Mnist_Data

  5. start=time.clock()
  6. #mnist = input_data.read_data_sets('/temp/', one_hot=True)
  7. mnist = Get_Mnist_Data.read_data_sets('Get_Mnist_Data', one_hot=True)
  8. end=time.clock()  
  9. print('Runing time = %s Seconds'%(end-start))

  10. lr = 0.001
  11. training_iters = 100
  12. batch_size = 128
  13. n_input = 49
  14. n_steps = 64
  15. n_hidden_units = 128
  16. n_classes = 10

  17. def compute_accuracy(v_x, v_y):
  18.     global prediction
  19.     y_pre = sess.run(prediction, feed_dict={x:v_x, keep_prob:1})
  20.     correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
  21.     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  22.     result = sess.run(accuracy,feed_dict={x: v_x, y: v_y, keep_prob:1})
  23.     return result

  24. def weight_variable(shape):
  25.     initial = tf.truncated_normal(shape, stddev=0.1)
  26.     return tf.Variable(initial)
  27.    
  28. def bias_variable(shape):
  29.     initial = tf.constant(0.1, shape=shape)
  30.     return tf.Variable(initial)

  31. def conv2d(x, W):
  32.     # strides=[1,x_movement,y_movement,1]
  33.     return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')

  34. def max_pool_2x2(x):
  35.     return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

  36. def conv_pool_layer(X, img_len, img_hi, out_seq):
  37.     W = weight_variable([img_len, img_len, img_hi, out_seq])
  38.     b = bias_variable([out_seq])
  39.     h_conv = tf.nn.relu(conv2d(X, W) + b)
  40.     return max_pool_2x2(h_conv)

  41. def lstm(X):
  42.     lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
  43.     _init_state = lstm_cell.zero_state(batch_size, dtype=tf.float32)
  44.     outputs,states = tf.nn.dynamic_rnn(lstm_cell, X, initial_state=_init_state, time_major=False)
  45.     W = weight_variable([n_hidden_units, n_classes])
  46.     b = bias_variable([n_classes])
  47.     outputs = tf.unstack(tf.transpose(outputs, [1,0,2]))
  48.     results = tf.matmul(outputs[-1], W) + b
  49.     return results

  50. x = tf.placeholder(tf.float32, [None,784])
  51. y = tf.placeholder(tf.float32, [None,10])
  52. keep_prob = tf.placeholder(tf.float32)
  53. # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB
  54. x_image = tf.reshape(x, [-1,28,28,1])

  55. # ********************** conv1 *********************************
  56. # transfer a 5*5*1 imagine into 32 sequence
  57. #W_conv1 = weight_variable([5,5,1,32])
  58. #b_conv1 = bias_variable([32])
  59. # input a imagine and make a 5*5*1 to 32 with stride=1*1, and activate with relu
  60. #h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28*28*32
  61. #h_pool1 = max_pool_2x2(h_conv1) # output size 14*14*32
  62. h_pool1 = conv_pool_layer(x_image, 5, 1, 32)

  63. # ********************** conv2 *********************************
  64. # transfer a 5*5*32 imagine into 64 sequence
  65. #W_conv2 = weight_variable([5,5,32,64])
  66. #b_conv2 = bias_variable([64])
  67. # input a imagine and make a 5*5*32 to 64 with stride=1*1, and activate with relu
  68. #h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14*14*64
  69. #h_pool2 = max_pool_2x2(h_conv2) # output size 7*7*64
  70. h_pool2 = conv_pool_layer(h_pool1, 5, 32, 64)

  71. # reshape data
  72. X_in = tf.reshape(h_pool2, [-1,49,64])
  73. X_in = tf.transpose(X_in, [0,2,1])

  74. #put into a lstm layer
  75. prediction = lstm(X_in)
  76. # ********************* func1 layer *********************************
  77. #W_fc1 = weight_variable([7*7*64, 1024])
  78. #b_fc1 = bias_variable([1024])
  79. # reshape the image from 7,7,64 into a flat (7*7*64)
  80. #h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
  81. #h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  82. #h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

  83. # ********************* func2 layer *********************************
  84. #W_fc2 = weight_variable([1024, 10])
  85. #b_fc2 = bias_variable([10])
  86. #prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

  87. # calculate the loss
  88. cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y))
  89. # use Gradientdescentoptimizer
  90. train_step = tf.train.AdamOptimizer(lr).minimize(cross_entropy)

  91. correct_pred = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1))
  92. accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
  93. # init session
  94. sess = tf.Session()
  95. sess.run(tf.global_variables_initializer())

  96. for i in range(training_iters):
  97.     batch_x, batch_y = mnist.train.next_batch(batch_size)
  98.     sess.run(train_step,feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
  99.     if i % 50 == 0:
  100.         print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
  101. sess.close()
复制代码






算法QQ  3283892722
群智能算法链接http://halcom.cn/forum.php?mod=forumdisplay&fid=73
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Python|Opencv|MATLAB|Halcom.cn ( 蜀ICP备16027072号 )

GMT+8, 2024-11-22 23:23 , Processed in 0.201376 second(s), 24 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表