|
Kmeans聚类算法——K均值聚类算法
百度网盘链接:
视频链接:http://pan.baidu.com/s/1jIwYfky
具体链接在halcom.cn论坛,联系人QQ:3283892722
该论坛是一个学习交流平台,我会逐一的和大家分享学习。
欢迎大家录制视频,并提交给我,我来设置视频,你可在论坛进行打赏分享。
视频专用播放器:http://halcom.cn/forum.php?mod=viewthread&tid=258&extra=page%3D1
使用环境:Win7-32bit-Anaconda2-4.3.1-Windows-x86.exe具体的代码如下:Kmeans_function.py子函数文件:
- # -*- coding: utf-8 -*-
- """
- Created on Sat Apr 08 22:19:29 2017
- @author: ysw
- """
- from numpy import *
- #import time
- import matplotlib.pyplot as plt
- # calculate Euclidean distance
- def euclDistance(vector1, vector2):
- return sqrt(sum(power(vector2 - vector1, 2)))
- # init centroids with random samples
- def initCentroids(dataSet, k):
- numSamples, dim = dataSet.shape
- centroids = zeros((k, dim))
- for i in range(k):
- index = int(random.uniform(0, numSamples))
- centroids[i, :] = dataSet[index, :]
- return centroids
-
- # k-means cluster
- def kmeans(dataSet, k):
- numSamples = dataSet.shape[0]
- # first column stores which cluster this sample belongs to,
- # second column stores the error between this sample and its centroid
- clusterAssment = mat(zeros((numSamples, 2)))
- clusterChanged = True
-
- ## step 1: init centroids
- centroids = initCentroids(dataSet, k)
-
- while clusterChanged:
- clusterChanged = False
- ## for each sample
- for i in xrange(numSamples):
- minDist = 100000000.0
- minIndex = 0
- ## for each centroid
- ## step 2: find the centroid who is closest
- for j in range(k):
- distance = euclDistance(centroids[j, :], dataSet[i, :])
- if distance < minDist:
- minDist = distance
- minIndex = j
-
- ## step 3: update its cluster
- if clusterAssment[i, 0] != minIndex:
- clusterChanged = True
- clusterAssment[i, :] = minIndex, minDist**2
-
- ## step 4: update centroids
- for j in range(k):
- pointsInCluster = dataSet[nonzero(clusterAssment[:, 0].A == j)[0]]
- centroids[j, :] = mean(pointsInCluster, axis = 0)
-
- print 'Congratulations, cluster complete!'
- return centroids, clusterAssment
-
- # show your cluster only available with 2-D data
- def showCluster(dataSet, k, centroids, clusterAssment):
- numSamples, dim = dataSet.shape
- if dim != 2:
- print "Sorry! I can not draw because the dimension of your data is not 2!"
- return 1
-
- mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']
- if k > len(mark):
- print "Sorry! Your k is too large!"
- return 1
-
- # draw all samples
- for i in xrange(numSamples):
- markIndex = int(clusterAssment[i, 0])
- plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
-
- mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']
- # draw the centroids
- for i in range(k):
- plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)
-
- plt.show()
复制代码 Kmeans_main.py主函数程序:
- from numpy import *
- #import time
- #import matplotlib.pyplot as plt
- import Kmeans_function
- ## step 1: load data
- print "step 1: load data..."
- dataSet = []
- fileIn = open(r'C:\Users\ysw\Desktop\Python(x,y)2.7.10\testSet.txt')
- for line in fileIn.readlines():
- lineArr = line.strip().split()
- dataSet.append([float(lineArr[0]), float(lineArr[1])])
-
- ## step 2: clustering...
- print "step 2: clustering..."
- dataSet = mat(dataSet)
- k = 4
- centroids, clusterAssment = Kmeans_function.kmeans(dataSet, k)
- ## step 3: show the result
- print "step 3: show the result..."
- Kmeans_function.showCluster(dataSet, k, centroids, clusterAssment)
复制代码
参考链接:http://blog.csdn.net/zouxy09/article/details/17589329
http://halcom.cn/forum.php?mod=viewthread&tid=2770&extra=
|
本帖子中包含更多资源
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
|