|
- # -*- coding: utf-8 -*-
- """
- Created on Wed Sep 17 11:03:53 2025
- @author: WITIAI
- """
- import argparse
- import numpy as np
- import numpy as np
- import torch
- import torchvision.models.resnet as resnet
- import torchvision.transforms as transforms
- import torch.nn as nn
- import torchvision.models.resnet as resnet
- import struct
- import os
- import sys
- import cv2
- resnet50 = resnet.resnet50(pretrained=False)
- modelpath=r'D:\0_WITIAI\Software_Package\Python3109\python3109amd64\Lib\site-packages\models_witiai\resnet50_class.pth'
- resnet50.load_state_dict(torch.load(modelpath))
- resnet50.eval()
- dic = resnet50.state_dict()
- imagepath = r'C:\WitiaiCvCodes\testimages\teddy.bmp'
- img = cv2.imread(imagepath) # reading that image as array
- if(img.shape[2] == 3):
- img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
- elif(img.shape[2] == 1):
- img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
- im_size = 224
- img = cv2.resize(img, (im_size, im_size)) # color image
- x_transforms = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ])
- image = x_transforms(img)
- print(image.size())
- image = image.unsqueeze(0)
- print(image.size())
复制代码
|
|