|
OCR深度学习模型CRNN+BiLSTM
- import torch
- import torch.nn as nn
- def conv3x3(in_planes, out_planes, stride=1):
- """3x3 convolution with padding"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
- padding=1, bias=False)
- def conv1x1(in_planes, out_planes, stride=1):
- """1x1 convolution"""
- return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
- class AsterBlock(nn.Module):
- def __init__(self, inplanes, planes, stride=1, downsample=None):
- super(AsterBlock, self).__init__()
- self.conv1 = conv1x1(inplanes, planes, stride)
- self.bn1 = nn.BatchNorm2d(planes)
- self.relu = nn.ReLU(inplace=True)
- self.conv2 = conv3x3(planes, planes)
- self.bn2 = nn.BatchNorm2d(planes)
- self.downsample = downsample
- self.stride = stride
- def forward(self, x):
- residual = x
- out = self.conv1(x)
- out = self.bn1(out)
- out = self.relu(out)
- out = self.conv2(out)
- out = self.bn2(out)
- if self.downsample is not None:
- residual = self.downsample(x)
- out += residual
- out = self.relu(out)
- return out
- class ResNet_ASTER(nn.Module):
- """For aster or crnn"""
- def __init__(self, num_class, with_lstm=False):
- super(ResNet_ASTER, self).__init__()
- self.with_lstm = with_lstm
- in_channels = 1
- self.layer0 = nn.Sequential(
- nn.Conv2d(in_channels, 32, kernel_size=(3, 3), stride=1, padding=1, bias=False),
- nn.BatchNorm2d(32),
- nn.ReLU(inplace=True))
- self.inplanes = 32
- self.layer1 = self._make_layer(32, 3, [2, 2]) # [16]
- self.layer2 = self._make_layer(64, 4, [2, 2]) # [8]
- self.layer3 = self._make_layer(128, 6, [2, 1]) # [4]
- self.layer4 = self._make_layer(256, 6, [2, 1]) # [2]
- self.layer5 = self._make_layer(512, 3, [2, 1]) # [1]
- self.output_layer = nn.Linear(512,num_class)
- if with_lstm:
- self.rnn = nn.LSTM(512, 256, bidirectional=True, num_layers=2)
- self.out_planes = 2 * 256
- else:
- self.out_planes = 512
- for m in self.modules():
- if isinstance(m, nn.Conv2d):
- nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
- elif isinstance(m, nn.BatchNorm2d):
- nn.init.constant_(m.weight, 1)
- nn.init.constant_(m.bias, 0)
- nn.init.normal_(self.output_layer.weight,std=0.01)
- nn.init.constant_(self.output_layer.bias,0)
- def _make_layer(self, planes, blocks, stride):
- downsample = None
- if stride != [1, 1] or self.inplanes != planes:
- downsample = nn.Sequential(
- conv1x1(self.inplanes, planes, stride),
- nn.BatchNorm2d(planes))
- layers = []
- layers.append(AsterBlock(self.inplanes, planes, stride, downsample))
- self.inplanes = planes
- for _ in range(1, blocks):
- layers.append(AsterBlock(self.inplanes, planes))
- return nn.Sequential(*layers)
- def forward(self, x):
- x0 = self.layer0(x)
- x1 = self.layer1(x0)
- x2 = self.layer2(x1)
- x3 = self.layer3(x2)
- x4 = self.layer4(x3)
- x5 = self.layer5(x4)
- cnn_feat = x5.squeeze(2) # [N, c, w]
- cnn_feat = cnn_feat.permute(2,0,1) #[T, b, input_size]
- if self.with_lstm:
- rnn_feat, _ = self.rnn(cnn_feat)
- T,b,h = rnn_feat.size()
- output = rnn_feat.view(T*b,h)
- output = self.output_layer(output)
- output = output.view(T,b,-1)
- output = nn.functional.log_softmax(output,dim=2)
- return output
- else:
- return cnn_feat
- def get_crnn(config):
- assert config.MODEL.IMAGE_SIZE.H == 32, 'imgH has to be a multiple of 32'
- return ResNet_ASTER(config.MODEL.NUM_CLASSES + 1, True)
- if __name__ == "__main__":
- from torchsummary import summary
- model = ResNet_ASTER(35, True)
- model.eval()
- summary(model, (3, 32, 288))
复制代码
|
|