|
CNN卷积神经网络
百度网盘代码分享:http://pan.baidu.com/s/1eRQcCuu
电脑:Win7旗舰版+64Bit+AMD Athlon(tm)X2 DualCore QL-64 2.10GHz RAM2.75GB
Anaconda3-4.2.0-Windows-x86_64- import time
- #from tensorflow.examples.tutorials.mnist import input_data
- import tensorflow as tf
- import Get_Mnist_Data
- start=time.clock()
- #mnist = input_data.read_data_sets('/temp/', one_hot=True)
- mnist = Get_Mnist_Data.read_data_sets('Get_Mnist_Data', one_hot=True)
- end=time.clock()
- print('Runing time = %s Seconds'%(end-start))
- def compute_accuracy(v_x, v_y):
- global prediction
- y_pre = sess.run(prediction, feed_dict={x:v_x, keep_prob:1})
- correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- result = sess.run(accuracy,feed_dict={x: v_x, y: v_y, keep_prob:1})
- return result
- def weight_variable(shape):
- initial = tf.truncated_normal(shape, stddev=0.1)
- return tf.Variable(initial)
-
- def bias_variable(shape):
- initial = tf.constant(0.1, shape=shape)
- return tf.Variable(initial)
- def conv2d(x, W):
- # strides=[1,x_movement,y_movement,1]
- return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
- def max_pool_2x2(x):
- return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
- # load mnist data
- #mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
- x = tf.placeholder(tf.float32, [None,784])
- y = tf.placeholder(tf.float32, [None,10])
- keep_prob = tf.placeholder(tf.float32)
- # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB
- x_image = tf.reshape(x, [-1,28,28,1])
- # ********************** conv1 *********************************
- # transfer a 5*5*1 imagine into 32 sequence
- W_conv1 = weight_variable([5,5,1,8])
- b_conv1 = bias_variable([8])
- # input a imagine and make a 5*5*1 to 32 with stride=1*1, and activate with relu
- h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28*28*32
- h_pool1 = max_pool_2x2(h_conv1) # output size 14*14*32
- # ********************** conv2 *********************************
- # transfer a 5*5*32 imagine into 64 sequence
- W_conv2 = weight_variable([5,5,8,16])
- b_conv2 = bias_variable([16])
- # input a imagine and make a 5*5*32 to 64 with stride=1*1, and activate with relu
- h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14*14*64
- h_pool2 = max_pool_2x2(h_conv2) # output size 7*7*64
- # ********************* func1 layer *********************************
- W_fc1 = weight_variable([7*7*16, 128])
- b_fc1 = bias_variable([128])
- # reshape the image from 7,7,64 into a flat (7*7*64)
- h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*16])
- h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
- h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
- # ********************* func2 layer *********************************
- W_fc2 = weight_variable([128, 10])
- b_fc2 = bias_variable([10])
- prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
- # calculate the loss
- cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction), reduction_indices=[1]))
- # use Gradientdescentoptimizer
- train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
- # init session
- sess = tf.Session()
- sess.run(tf.global_variables_initializer())
- for i in range(100):
- batch_x, batch_y = mnist.train.next_batch(20)
- sess.run(train_step,feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
- if i % 20 == 0:
- print(compute_accuracy(mnist.test.images, mnist.test.labels))
- sess.close()
复制代码
注:老古董单CPU电脑性能差,故特征数选取较少,只为了能在流程上跑通过,读者可自主进行调节参数。
|
|