Hello Mat

 找回密码
 立即注册
查看: 4898|回复: 0

CNN卷积神经网络

[复制链接]

1323

主题

1551

帖子

0

金钱

管理员

Rank: 9Rank: 9Rank: 9

积分
22647
发表于 2017-9-14 22:10:58 | 显示全部楼层 |阅读模式
CNN卷积神经网络
百度网盘代码分享:http://pan.baidu.com/s/1eRQcCuu
电脑:Win7旗舰版+64Bit+AMD Athlon(tm)X2 DualCore QL-64 2.10GHz   RAM2.75GB
Anaconda3-4.2.0-Windows-x86_64
  1. import time
  2. #from tensorflow.examples.tutorials.mnist import input_data
  3. import tensorflow as tf
  4. import Get_Mnist_Data

  5. start=time.clock()
  6. #mnist = input_data.read_data_sets('/temp/', one_hot=True)
  7. mnist = Get_Mnist_Data.read_data_sets('Get_Mnist_Data', one_hot=True)
  8. end=time.clock()  
  9. print('Runing time = %s Seconds'%(end-start))

  10. def compute_accuracy(v_x, v_y):
  11.     global prediction
  12.     y_pre = sess.run(prediction, feed_dict={x:v_x, keep_prob:1})
  13.     correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
  14.     accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  15.     result = sess.run(accuracy,feed_dict={x: v_x, y: v_y, keep_prob:1})
  16.     return result

  17. def weight_variable(shape):
  18.     initial = tf.truncated_normal(shape, stddev=0.1)
  19.     return tf.Variable(initial)
  20.    
  21. def bias_variable(shape):
  22.     initial = tf.constant(0.1, shape=shape)
  23.     return tf.Variable(initial)

  24. def conv2d(x, W):
  25.     # strides=[1,x_movement,y_movement,1]
  26.     return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')

  27. def max_pool_2x2(x):
  28.     return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

  29. # load mnist data
  30. #mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

  31. x = tf.placeholder(tf.float32, [None,784])
  32. y = tf.placeholder(tf.float32, [None,10])
  33. keep_prob = tf.placeholder(tf.float32)
  34. # reshape(data you want to reshape, [-1, reshape_height, reshape_weight, imagine layers]) image layers=1 when the imagine is in white and black, =3 when the imagine is RGB
  35. x_image = tf.reshape(x, [-1,28,28,1])

  36. # ********************** conv1 *********************************
  37. # transfer a 5*5*1 imagine into 32 sequence
  38. W_conv1 = weight_variable([5,5,1,8])
  39. b_conv1 = bias_variable([8])
  40. # input a imagine and make a 5*5*1 to 32 with stride=1*1, and activate with relu
  41. h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28*28*32
  42. h_pool1 = max_pool_2x2(h_conv1) # output size 14*14*32

  43. # ********************** conv2 *********************************
  44. # transfer a 5*5*32 imagine into 64 sequence
  45. W_conv2 = weight_variable([5,5,8,16])
  46. b_conv2 = bias_variable([16])
  47. # input a imagine and make a 5*5*32 to 64 with stride=1*1, and activate with relu
  48. h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14*14*64
  49. h_pool2 = max_pool_2x2(h_conv2) # output size 7*7*64

  50. # ********************* func1 layer *********************************
  51. W_fc1 = weight_variable([7*7*16, 128])
  52. b_fc1 = bias_variable([128])
  53. # reshape the image from 7,7,64 into a flat (7*7*64)
  54. h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*16])
  55. h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
  56. h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

  57. # ********************* func2 layer *********************************
  58. W_fc2 = weight_variable([128, 10])
  59. b_fc2 = bias_variable([10])
  60. prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)


  61. # calculate the loss
  62. cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(prediction), reduction_indices=[1]))
  63. # use Gradientdescentoptimizer
  64. train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
  65. # init session
  66. sess = tf.Session()
  67. sess.run(tf.global_variables_initializer())

  68. for i in range(100):
  69.     batch_x, batch_y = mnist.train.next_batch(20)
  70.     sess.run(train_step,feed_dict={x: batch_x, y: batch_y, keep_prob: 0.5})
  71.     if i % 20 == 0:
  72.         print(compute_accuracy(mnist.test.images, mnist.test.labels))

  73. sess.close()
复制代码

注:老古董单CPU电脑性能差,故特征数选取较少,只为了能在流程上跑通过,读者可自主进行调节参数。








算法QQ  3283892722
群智能算法链接http://halcom.cn/forum.php?mod=forumdisplay&fid=73
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Python|Opencv|MATLAB|Halcom.cn ( 蜀ICP备16027072号 )

GMT+8, 2024-11-22 23:13 , Processed in 0.269824 second(s), 25 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表