|
最小二乘支持向量机LS-SVMlab工具箱:http://www.esat.kuleuven.be/sista/lssvmlab/- % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2})
- % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel})
- % >> [alpha, b] = trainlssvm({X,Y,type,gam,sig2,kernel,preprocess})
- %
- % Outputs
- % alpha : N x m matrix with support values of the LS-SVM
- % b : 1 x m vector with bias term(s) of the LS-SVM
- % Inputs
- % X : N x d matrix with the inputs of the training data
- % Y : N x 1 vector with the outputs of the training data
- % type : 'function estimation' ('f') or 'classifier' ('c')
- % gam : Regularization parameter正则化参数
- % sig2 : Kernel parameter (bandwidth in the case of the 'RBF_kernel')基宽因子
- % kernel(*) : Kernel type (by default 'RBF_kernel')
- % preprocess(*) : 'preprocess'(*) or 'original'
复制代码
支持向量机SVM工具箱:http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- % Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');
- % libsvm_options:
- % -s svm_type : set type of SVM (default 0)
- % 0 -- C-SVC (multi-class classification)
- % 1 -- nu-SVC (multi-class classification)
- % 2 -- one-class SVM
- % 3 -- epsilon-SVR (regression)
- % 4 -- nu-SVR (regression)
- % -t kernel_type : set type of kernel function (default 2)
- % 0 -- linear: u'*v
- % 1 -- polynomial: (gamma*u'*v + coef0)^degree
- % 2 -- radial basis function: exp(-gamma*|u-v|^2)
- % 3 -- sigmoid: tanh(gamma*u'*v + coef0)
- % 4 -- precomputed kernel (kernel values in training_instance_matrix)
- % -d degree : set degree in kernel function (default 3)
- % -g gamma : set gamma in kernel function (default 1/num_features)
- % -r coef0 : set coef0 in kernel function (default 0)
- % -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
- % -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
- % -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
- % -m cachesize : set cache memory size in MB (default 100)
- % -e epsilon : set tolerance of termination criterion (default 0.001)
- % -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
- % -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
- % -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
- % -v n : n-fold cross validation mode
- % -q : quiet mode (no outputs)
复制代码
百度网盘分享:http://pan.baidu.com/s/1boT5B4N
可参考文章:http://www.doc88.com/p-959212556942.html
|
|