|
Tensorflow手写数字softmax识别百度网盘链接:
链接:http://pan.baidu.com/s/1c1OJp4G百度网盘代码分享:http://pan.baidu.com/s/1eRQcCuu
具体链接在halcom.cn论坛,联系人QQ:3283892722
该论坛是一个学习交流平台,我会逐一的和大家分享学习。
欢迎大家录制视频,你可在论坛进行打赏分享。
视频专用播放器:http://halcom.cn/forum.php?mod=viewthread&tid=258&extra=page%3D1
- import argparse
- import sys
- from tensorflow.examples.tutorials.mnist import input_data
- import tensorflow as tf
- import Get_Mnist_Data
- #mnist = input_data.read_data_sets('/temp/', one_hot=True)
- mnist = Get_Mnist_Data.read_data_sets('Get_Mnist_Data', one_hot=True)
- # Create the model
- x = tf.placeholder(tf.float32, [None, 784])
- W = tf.Variable(tf.zeros([784, 10]))
- b = tf.Variable(tf.zeros([10]))
- y = tf.matmul(x, W) + b
- # Define loss and optimizer
- y_ = tf.placeholder(tf.float32, [None, 10])
- cross_entropy = tf.reduce_mean(
- tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
- train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
- sess = tf.InteractiveSession()
- tf.global_variables_initializer().run()
- # Train
- for _ in range(1000):
- batch_xs, batch_ys = mnist.train.next_batch(100)
- sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
- # Test trained model
- correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
- accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
- print(sess.run(accuracy, feed_dict={x: mnist.test.images,
- y_: mnist.test.labels}))
复制代码
|
|